
BEDEUTUNG DES WASSERSTOFFES IM ZUKÜNFTIGEN ENERGIEMIX

J. Richter, M. Jahn, M. Stelter, I. Voigt

ThEGA-Forum, 24.10.2019

AGENDA

- Fraunhofer IKTS
- Wasserstoff
 - Eigenschaften, Erzeugung, Anwendung
- Wasserstoff und IKTS
- Ausblick

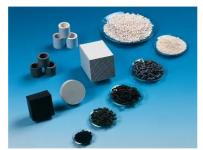
Fraunhofer IKTS

"Geschäftsfeld Umwelt- und Verfahrenstechnik"

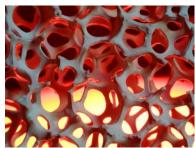
cerenergy® G1 Rundzelle 100 Ah Weltrekord: Größte Na/NiCl₂-Zelle der Welt!

- 8 Geschäftsfelder
- "Energie": Brennstoffzellen, Elektrolyseure, Energiespeicher, PV usw.

Katalysatoren


Filter

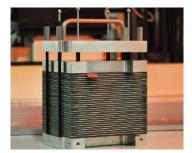
Membranen


Reaktoren

Elektrolyse

Anlagen

Metalle Edelmetalle Mischoxide


Partikelfilter Heißgasfilter

H₂-Membranen
CO₂-Membranen
H₂O-Membranen
O₂-Membranen

Festbettreaktor Rohrbündelreaktor Membranreaktor

HT-Elektrolyse (SOEC) CO₂-Coelektrolyse

Membrananlagen
FT-Anlage
Methanisierung

Sonnenenergie auf Landfläche 3,1 · 10¹⁷ kWh/a

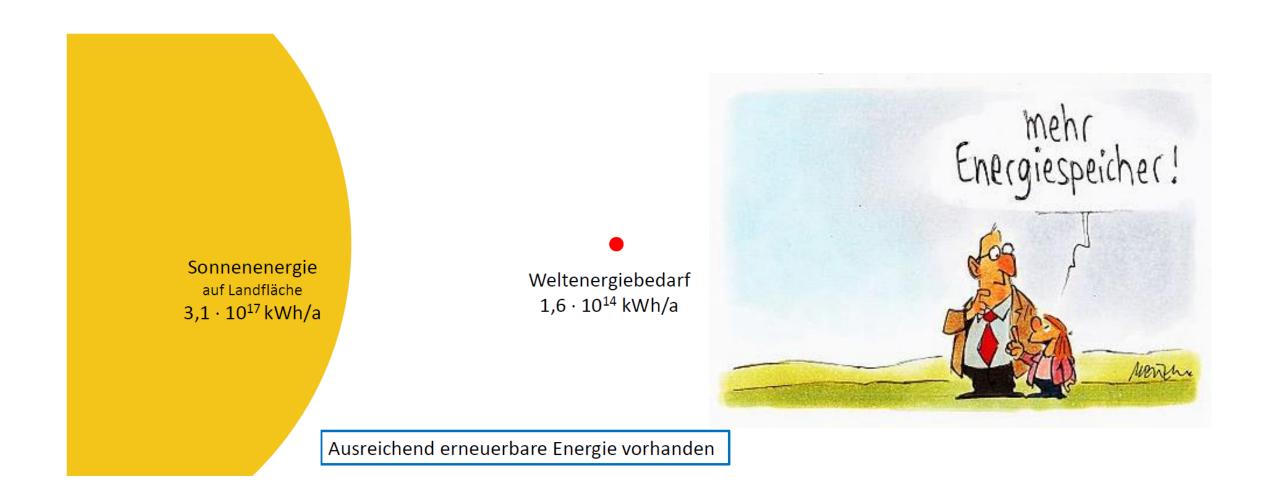
Weltenergiebedarf 1,6 · 10¹⁴ kWh/a

Ausreichend erneuerbare Energie vorhanden

Sonnenenergie auf Landfläche 3,1 · 10¹⁷ kWh/a

Weltenergiebedarf 1,6 · 10¹⁴ kWh/a

Ausreichend erneuerbare Energie vorhanden



Sonnenenergie auf Landfläche 3,1 · 10¹⁷ kWh/a

Weltenergiebedarf 1,6 · 10¹⁴ kWh/a

Ausreichend erneuerbare Energie vorhanden

Presseschau

"Am Ende kommt der Wasserstoff" FAZ (21.02.2018):

Augsburger Allgemeine (08.06.2018): "Alternative Wasserstoff: Hat das überhaupt Zukunft?"

Süddeutsche Zeitung (14.10.2018):

"Wasserstoff gegen Batteriepanzer"

Zeit (31.05.2019): "Wasserstoff in Dieselform" "...Der Wasserstoff wird in einer Trägerflüssigkeit gespeichert...." → LOHC

Passauer Neue Presse (17.01.2019): "Das erste Wasserstoff-Mountainbike" Spiegel (10.12.2018): "Die Brennstoffzelle wird sich durchsetzen"

Süddeutsche Zeitung (05.02.2019):

"Warum die deutschen Autohersteller beim Wasserstoffantrieb zögern"

"...Wasserstoff hat die geringste Priorität in der Automobilindustrie...."

Hamburg will große Wasserstoff-Anlage im Hafen bauen" [100 MW \(\text{\text{\text{2}}} \) 2 t/h bzw. 22.000 m³/h]

Spiegel (05.09.2019):

"Energiewende: Hamburg plant weltgrößte Anlage für Wasserstoff-Elektrolyse"

Stuttgarter Zeitung (26.08.2018): "Japan glaubt fest an seine Wasserstoffzukunft"

"...setzt auf eine Technologie, die hierzulande stiefmütterlich behandelt wird und viele Kritiker hat..."

Folgerungen aus Presseschau

- Schwerpunkt Mobilität / Verkehr (energetische Nutzung)
 - "Kampf der e-Antriebssysteme": Wasserstoff $\leftarrow \rightarrow$ Batterie
 - Reichweiten e-Mobilität: Brennstoffzellen-Antrieb ← → Batterie-Antrieb
 - Dauer eines Tank- bzw. Ladevorganges vs. Infrastruktur: H_2 -Tankstellen \leftarrow \rightarrow Ladesäulen
 - Gefahr durch Wasserstoff? (Druck / Verflüssigen / alternative Speichermöglichkeiten)
 - Reichweiten Rohstoffe zur Herstellung der Peripherie (seltene Erden)
- Einsatz H₂ in technologischen Bereichen / Industrie? (stoffliche Nutzung)
- Sektoren Wärme und Energie (Rückverstromung)?
- gesellschaftliche Akzeptanz: Umgang mit einer "neuen" Technologie (vgl. CCS)

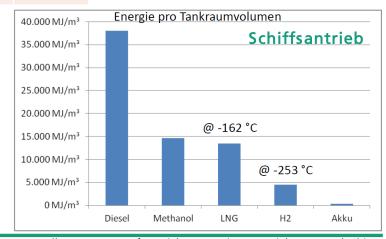
überschlägige (!) Wirkungsgradbetrachtungen

Wasserstoffwirtschaft	η in %
Wasserstoff thermochemisch aus Biomasse	0,75
Wasserstoff aus Elektrolyse	0,80
Wasserstofftransport im Gasnetzwerk	0,99
Strom und Wärme aus Brennstoffzellenheizung	0,85
Brennstoffzelle elektrisch	0,60
Lithium-Ionen-Akku	0,94
Elektromotor	0,95
Wasserstoff Verdichtung auf 700 bar	0,88

Fossile Energiewirtschaft	η in %
Wasserstoff aus Erdgasreformation	0,75
Strom aus Kohlekraftwerken	0,38
Stromtransport	0,92
Transport und Aufbereitung Benzin	0,85
Ottomotor	0,24
Gasturbine	0,40

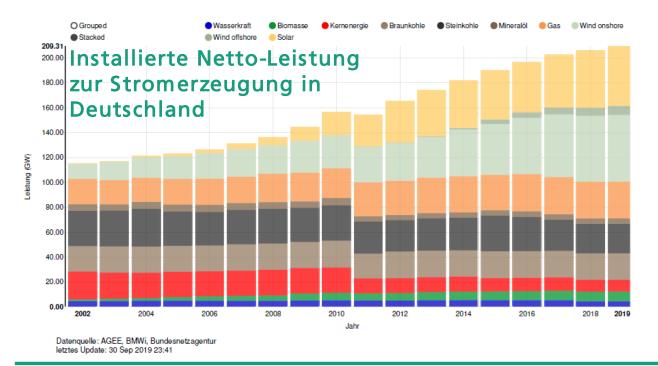
PV / Wind	η in %
Wechselrichter	0,90
PtX-Technologien (CO ₂ +H ₂)	η in %
Methan	0,80
Methanol	0,20

Fahrzeug Ottomotor: 0,85 x 0,24 = 0,20


E-Mobilität Akku: 0,90 x 0,94 x 0,94 x 0,95 = 0,76

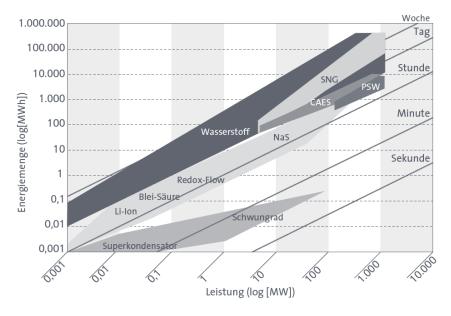
E-Mobilität Brennstoffzelle: 0,90 x 0,80 x 0,99 x 0,88 x 0,60 x 0,95 = 0,36

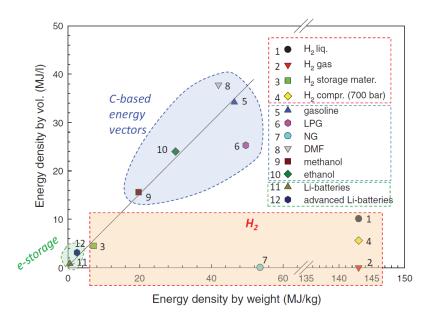
■ Verstromung (SNG): $0.90 \times 0.80 \times 0.80 \times 0.40 = 0.23$


Partikel, NO_x, CO₂, ...?

Darstellung Meyer-Werft, Projektpartner im EU-Projekt "Hy-Meth-Ship"

- Energiewende: Nutzungsmöglichkeiten regenerativer Energien, Wind und PV prominent
- fluktuierende Leistungen, limitierte Speichermöglichkeiten (Stromnetz: ~0,04 TWh)
 - → Speicherung notwendig





IKTS

- Speicherkapazität
- Energiedichte
- Reaktionszeit
- Zyklenfestigkeit
- Kosten für Bau / Betrieb
- Wirkungsgrad
- Speicherdauer
- Leistung

...

- größere Energiemengen, höhere Leistungen, längerfristige Speicherdauer → chemische Speicher
- PtG/PtL/PtCh/PtX → erste Umwandlungsstufe: power-to-gas, d.h. Strom zu Wasserstoff
 - \rightarrow zweite Umwandlungsstufe: H₂ mit CO₂ zu CH₄ (Erdgasnetz: >200 TWh), CH₃OH, ...

- Jules Verne "Die geheimnisvolle Insel" (1875)
 → Vision: Wasserstoff und Sauerstoff als Energiequelle
- Wasserstoffwirtschaft (Wasserstoff als einziger Energieträger) bisher in keinem Land der Welt verwirklicht
- \blacksquare chemisch: Primärenergieträger \leftarrow \rightarrow praktisch: nicht in freier Form in der Natur vorhanden
 - Wasserstoffherstellung durch andere Energieträger (!)
 - fossil = "grauer Wasserstoff" bzw. regenerativ = "grüner Wasserstoff"
 - → Nachhaltigkeit einer Wasserstoffwirtschaft abhängig von der Nachhaltigkeit der eingesetzten Primärenergie

- Dampfreformierung (steam reforming) von Kohlenwasserstoffen (Erdgas): η~60...70%
 - "grauer Wasserstoff"
 - $\blacksquare CH_4 + H_2O \leftrightarrow CO + 3H_2 (+206 \text{ kJ/mol})$
 - Reaktionswärme: $2 \text{ CH}_4 + \text{O}_2 \leftrightarrow 2 \text{CO} + 4 \text{H}_2 \text{ (-71 kJ/mol)}$
 - anschließend Wassergas-Shift: $CO + H_2O \leftrightarrow CO_2 + H_2$ (-41,2kJ/mol)
- Wasser-Elektrolyse (alkalisch, SOEC, ...): η~70...80%
 - "grüner Wasserstoff" (bei Nutzung von regenerativ erzeugtem Strom)
 - $2 H_2O (I) \rightarrow 2H_2 (g) + O_2 (g)$
- thermische Verfahren (Kværner-Verfahren, Pyrolyse, thermochemische Spaltung, ...)
- biologische Verfahren (Biomasse, Fermentation, photobiologisch, ...)

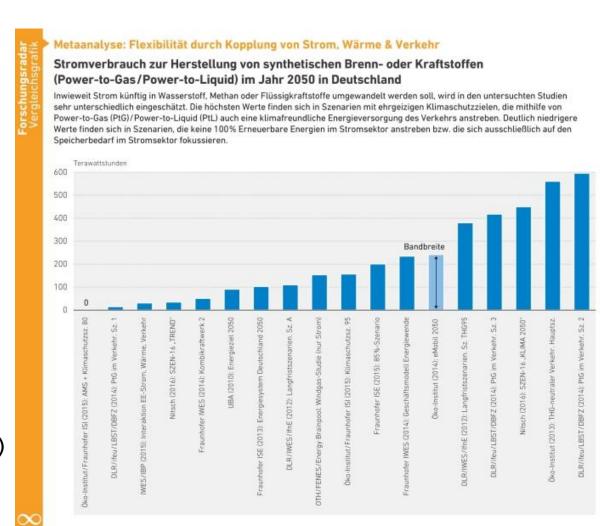
Alkalische Elektrolyse

- industriell etabliert
- korrosive Medien
- geringe Stromdichten
- 4,2–5,9 kWh/Nm³ H₂
- 1000-1200 €/kW (2030: <1000 €/kW)*

PEM-Elektrolyse

- Demo/Anwendung
- geringere Lebensdauer
- 4,2–5,6 kWh/Nm³ H₂
- 1800-2300 €/kW (2030: <1000 €/kW)*

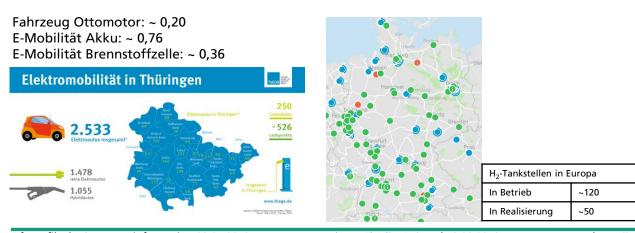
Hochtemperaturelektrolyse

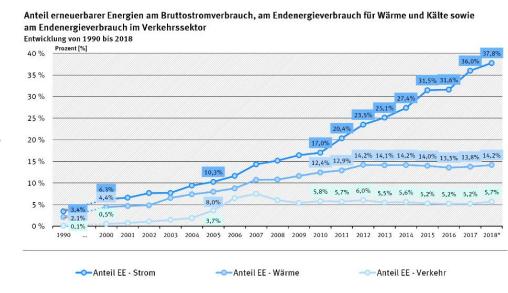


- Labor/Demo
- Temperatur: ~800 °C
- 3,0–4,5 kWh/Nm³ H₂ + CO
- >2000 €/kW (2030: ~1000 €/kW)*

Speicherung

- Druckgasspeicher (Hochdruckspeicher 700bar+)
- Flüssiggasspeicher (Wärmedämmung Tank)
- Adsorptionsspeicherung (hochporöse Materialien: MOFs, Zeolithe, ...)
- Metallhydridspeicher
- chemische Verbindungen
 - als Transportmedium im Kreislauf (LOHC, ...)
 - zur stofflichen oder energetischen Nutzung (NH₃, CH₄, CH₃OH, ...)
- im (deutschen) Erdgasnetz bis zu 5 Vol.-% (Endgeräte!)
 - "Gasblasen" vs. Technologie, Beispiel Glaswanne
- Kavernen




www.forschungsradar.de

Wasserstoff – Eigenschaften, Erzeugung, Anwendung: Verkehrssektor

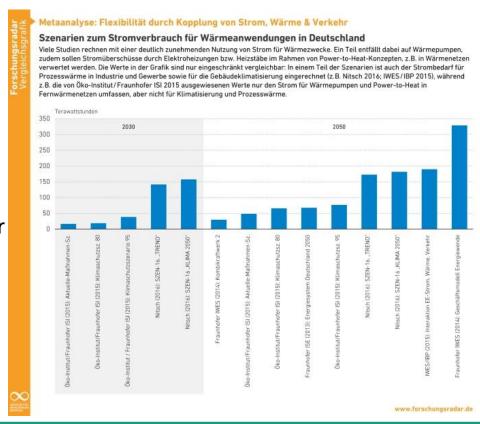
* vorläufige Werte

- Handlungsbedarf!
 - Infrastruktur ←→ Anzahl Fahrzeuge ←→ Art Fahrzeuge
 - ab ca. 250km FCEV klimafreundlicher als BEV*
 - Demo-Projekte im kommunalen Bereich (Nutzfahrzeuge)
- Schwerlast / Schiffe / ...: H₂, CH₄, PtL (syn-fuels)

Deutschland	BEV	FCEV
Ladestation / Tankstelle	~16.000	~75
Reichweite [km]	100400	500800
Ladedauer	10h <1 h (fast charge)	3 min
Fahrzeuge / Ladestelle / Tag	6080	250
Bedarf	Anschluss 300kW (permanent)	50 kg/h H ₂

Infografik ThEGA, Presseinformation 23.05.2019

https://h2.live/ Stand:13.09.2019


https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen

Ouelle: Umweltbundesamt (UBA) auf Basis AGEE-Stat

Wasserstoff – Eigenschaften, Erzeugung, Anwendung: Wärmesektor

- Raumwärme, Warmwasser, Prozesswärme: ~50% des Endenergiebedarfes (D, 2017)
 - starker Handlungsbedarf (Gebäudedämmung, Heizungsanlagen)
- Heizungsanlagen langlebig (~20 Jahre)
 - Umstellung auf höheren H₂-Gehalt im Erdgasnetz
- viele Studien rechnen mit Zunahme von Strom im Wärmesektor
 - power-to-heat (PtH) / Wärmepumpen
 - Hochtemperatur-Prozesswärme nicht über direkte Stromnutzung möglich → PtG (H₂, CH₄)
 - KWK, Gas-BHKW (Strom, Wärme aus H₂, syn. CH₄)
 - Brennstoffzellensysteme (SOFC für Privathaushalte)

http://www.forschungsradar.de/metaanalysen/einzelansicht/news/metaanalyse-zur-flexibilitaet-durch-sektorkopplung.html.

Zwischenfazit

- **Energieeinsparung** durch Minimierung Verluste und Optimierung Prozesse
- es wird sich nicht ein einzelnes Energiesystem etablieren, sondern ein Mix verschiedener Systeme
 - Wasserstoff ideal zur Sektorenkopplung (speziell Wärme und Verkehr ausbaufähig)
 - Studien konvergieren langsam: Elektrolyse (H₂) benötigt, synthetische KW eher bei ehrgeizigen Zielen >95% THG-Reduktion
- zukünftiges Energiesystem:
 - chemische (Langfrist-)Speicher (H₂, CH₄, ...) auf Basis regenerativer Energien notwendig
 - "grüner Wasserstoff" benötigt große Mengen regenerativen Stromes
 - geringer Langfristspeicherbedarf aufgrund geringer Wirkungsgrade bei Umwandlungsketten (Beispiel Strom \rightarrow H₂ \rightarrow CH₄ \rightarrow Strom)

Zwischenfazit

- Zeitschiene beachten kein digitales Umschalten, sondern Energiemix
 - PV & Wind & Biomasse & Wasser
 - BEV & FCEV
 - Strom & Wasserstoff
 - Wasserstoff & synthetische Kraftstoffe
- Brückentechnologien zur Emissionsminimierung nicht vergessen
 - CCU / CCS
 - Bsp. oxycoal: mit ~10% Mehraufwand Energie CCS möglich
- politische Rahmenbedingungen müssen passen und Energiewende fördern

Elektrodenbeschichtung alkalische Wasserelektrolyse (PADES)

2011: BSCF (Mischleiter für O₂-Separation)

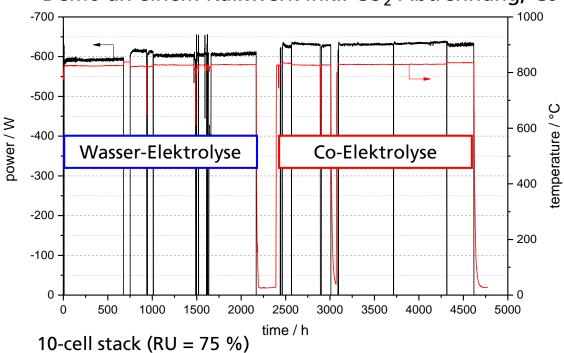
= anod. Elektro-Kat. für nachhaltige H₂-Produktion (AEL)

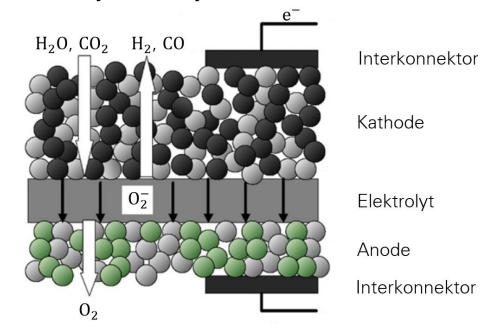
BSCF @ / = 50 µA cm E(V vs. RHE) 1.0 2.0 1.5 e_electron

2012: Kontakt Kumatec

Vorversuche im Direktauftrag

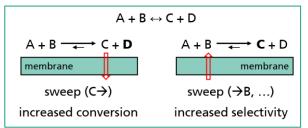
2014: Auswahl und Up-Scaling Beschichtungsverfahren

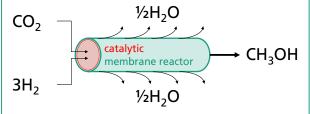




Hochtemperaturelektrolyse: Co-Elektrolyse → SynGas

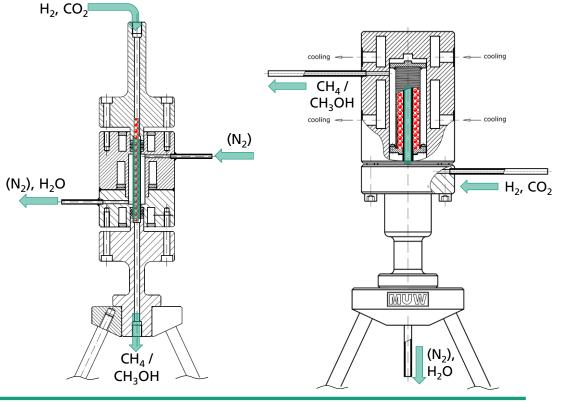
- Langzeitstabilität demonstriert
- SOEC-Stacks und -Module werden am IKTS entworfen und gefertigt
- Demo an einem Kalkwerk inkl. CO_2 -Abtrennung, Co-Elektrolyse und FT-Synthese (synth. Wachse) (HYPOS)



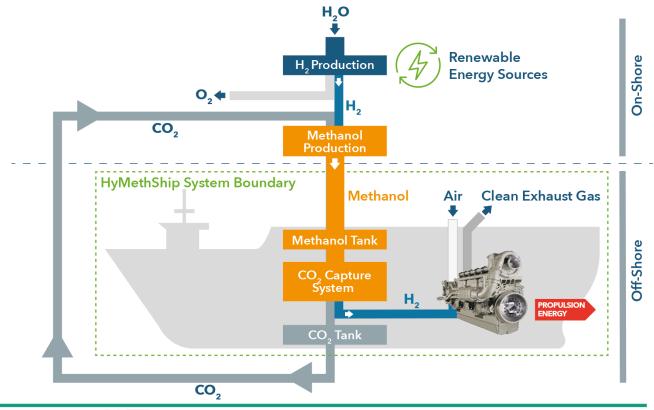


Methanisierung / Methanolsynthese aus H₂ im Membranreaktor

■ Methan / Methanol ($H_2 + CO_2$) \rightarrow jede Umwandlung führt zu Verlusten (Wirkungsgrad)

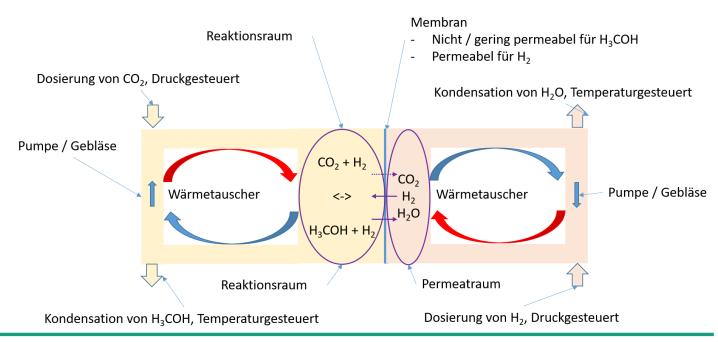

→ Ausbeutesteigerung im Membranreaktor (Reaktion und Stofftrennung im gleichen Reaktor)

■ Membranen widerstehen Prozessbedingungen (Temperatur, Druck, Δp)



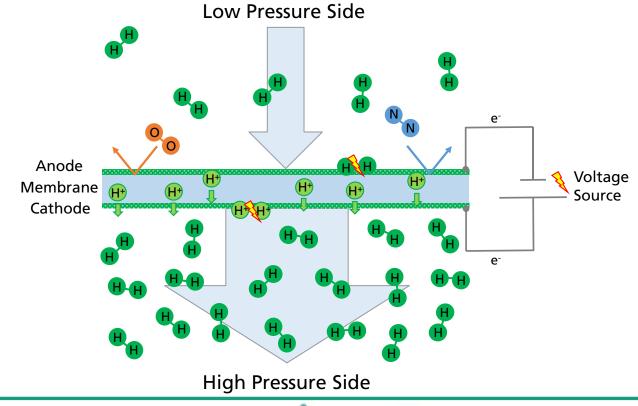
Methanol als H₂-Speicher

- EU-Projekt HyMethShip: Methanol-Reformierung als Antriebssystem für Schiffe
- Reforming von CH₃OH zu H₂ und CO₂
- $\blacksquare CH_3OH + H_2O \rightarrow 3H_2 + CO_2$
- Abtrennung von H₂ mittels Membran zur Versorgung des Gasmotors
- Auskondensieren des Restwassers
- Auskondensieren des CO₂
- Vertankung in Kombitanks
- Gasrückführung in Reaktor
- H₂-Überführung an Gasmotor
- Leistung: 1800 2000 kW elektrisch bei 45% Wirkungsgrad



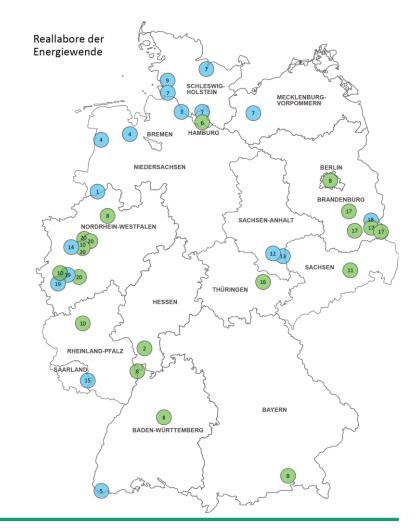
Wirtschaftlichkeit Biogasanlage: Methanolsynthese im Membranreaktor

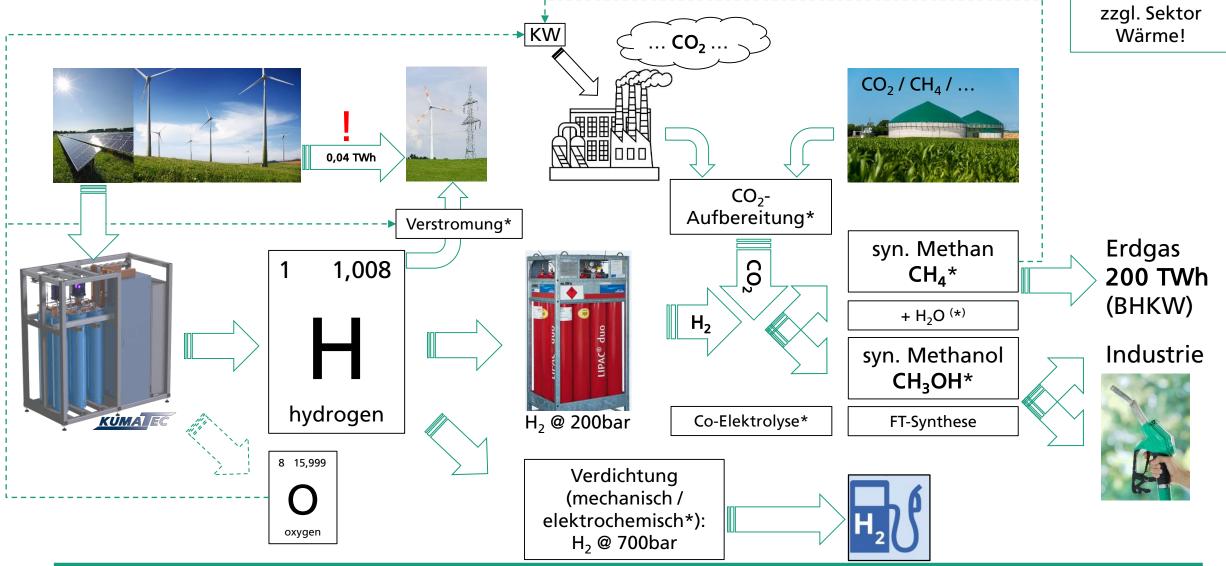
- TAB-Projekt Biogas+: Methanolsynthese an einer Biogasanlage
- Energie- und Wasserstoffspeicherung
- Methanolsynthese durch neuartige, druckgesteuerte Membranreaktoren
- Hintergrund:
 Grundlastfähigkeit Biogasanlagen
 Auslaufen EEG-Förderung



elektrochemische Verdichtung (+Aufreinigung) von H₂

- BMBF WIR H₂-WELL Projektidee Protonenpumpe
- Wasserstoff als Energieträger
- Basis für Speicherung und eine weitere Nutzung ist H₂ unter Druck (viele Umwandlungsverfahren benötigen hohen Druck)
- Reinheit > 99% wird oft für viele Katalysatoren/Prozesse benötigt
- kombinierte Druckerhöhung und Aufreinigung ermöglicht Prozess-Intensivierung





REALLABOR: Vision power-to-X mit regionalen Partnern (Biogasanlagen)

Reallabor	Sektor- kopplung	Wärme	CO₂-Nutzung	Elektrolyse + H₂-Nutzung	CH₄	CH₃OH	Sonstiges
1 CCU P2C Salzbergen			X		Χ	(X)	
2 DELTA	Х						
3 DOW Stade – Green MeOH			X			Х	
4 Element Eins	(X)			Х			
5 H2 Whylen				Х			
6 IW3		Х					
7 Norddeutsches Reallabor	(X)			х			
8 Reallabor GWP		Х					
9 ReWest100			(X)	X		(X)	
10 SmartQuart	Х						
11 CityImpuls DD		Х					
12 EnergieparkBL				х		(X)	
13 GreenHydroChem				х		Х	
14 H2Stahl				(X)			H ₂ im Stahlwerk
15 HydroHub Fenne				X			
16 JenErgieReal	Х						
17 Reallabor Lausitz	(X)						Quartiere, Verkehr
18 RefLau				Х			
19 StoreToPower		Х					Flüssigsalzspeicher
20 TransUrbanNRW		х					

Wasserstoff und Thüringen

- Regierung / Ministerien / TAB / Firmen / Unis / Forschungsinstitute / ...
 - Thüringer Klimagesetz: Reduktion der Treibhausgase um 80...95% bis 2050
 - "Eckpunkte Thüringer Wasserstoffstrategie" + "...strategische Entwicklung Wasserstoffwirtschaft..."
 (Freistaat Thüringen)
 - "Wasserstoff in Thüringen" (ThEGA → Bauhaus-Universität Weimar)
 - Veranstaltungen verschiedener Netzwerke, Bündnisse, Arbeitskreise
 - viele Thüringer Firmen mit speziellem know-how
 - starke Forschungslandschaft
 - → Ziel: weitere Demo-Projekte mit gesellschaftlicher Sichtbarkeit
- Potential: viele Anlagen (Wind, Biogas) fallen demnächst aus EEG-Vergütung
 - Alternativen für wirtschaftlichen Betrieb finden

Kommentare

- ...was hat wohl der erste Liter FT-Benzin gekostet?
 - Einführung einer (neuen) Technologie ist nicht sofort konkurrenzfähig
 - technologische Reife <u>und</u> Akzeptanz → System-Umstellung benötigt Koordination und Zeit
- ...was ist uns unsere Zukunft wert? Lässt sich das in € ausdrücken?
 - Energiewende muss für den Verbraucher dennoch finanzierbar sein
- ...wir haben ziemlich viel in der Hand lassen wir es nicht los, sondern packen es an! ...am besten gemeinsam!
- ...das IKTS ist nicht nur dabei, sondern geht auch voran

Vielen Dank!

Kommen Sie gern auf uns zu!

Dr. Jörg Richter

Gruppenleiter Katalyse und Materialsynthese

Fraunhofer-Institut für Keramische Technologien und Systeme IKTS
Michael-Faraday-Str. 1
07629 Hermsdorf

+49 (0) 36601 / 9301-2327 joerg.richter@ikts.fraunhofer.de

