

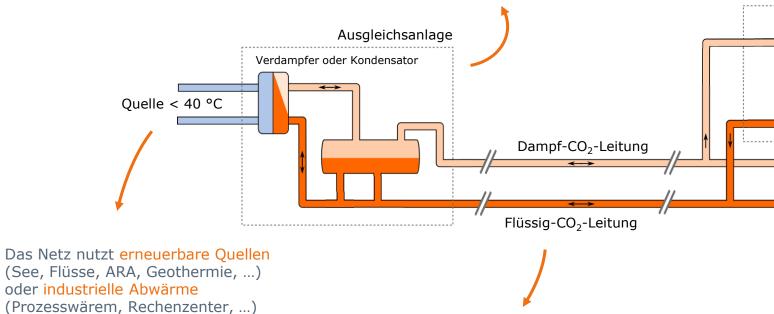
Dr. Alberto MianCEO
Doktorat EPFL

Patentierte Technologie

Effiziente Wärmeübertragung mit CO₂

Philippe von Holzen Sales & BD Manager MSc BA Pilotanlage seit 2022

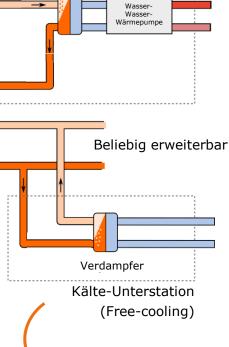
350 kW Leistung in Praxis


Makrteinführung in CH & EU

Skalierung & Industrialisierung

Einführung Funktionsweise des CO₂-Netzwerks

Die Zentrale verdampft oder kondensiert entsprechend der Nettonachfrage des Netzes.


Das CO₂ wird je nach Quellentemperatur zwischen 5 und 25 °C (35 und 55 bar) gehalten.

Wärme-Unterstation

Das CO₂ kondensiert im Wärmetauscher, Eine Wärmepumpe erhöht dann die Temperatur

Kondensator

Kälte-Unterstation

Das CO₂ verdampft im Wärmetauscher. Wenn es die Temperatur zulässt, wird direkt gekühlt (free-cooling).

Einführung Warum CO₂?

 H_2O

 CO_2

Niedrig (22kJ/kg)	Energiedichte	9x dichter (200kJ/kg), dank Phasenwechsel
15°C	Temperatur	15°C
Hoch	Durchfluss	9x tiefer
Grosse ø und starr	Leitungen	Kleine ø, flexibel
Teuer und zeitaufwändig	Baukosten	Bis zu 60 % Einsparungen bei Rohrleitungs- und Strassenbaukosten

Anwendungen Netzwerktypologie

Zwei Haupttypen von CO₂-Netzwerken

Transportleitung

Einzelner Punkt für die Lieferung von Wärme oder Kälte

z.B. Wärmepumpen, die an ein Fernwärme- oder Kältenetz angeschlossen sind

Anergienetzwerk

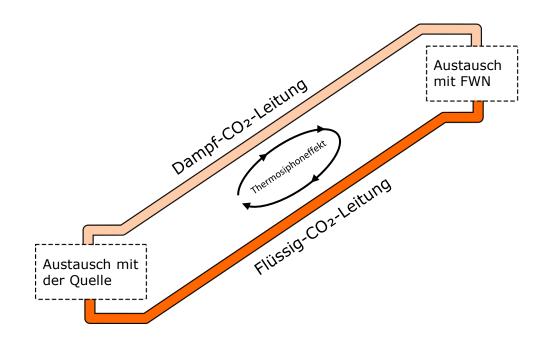
Mehrere Lieferstellen für Wärme und/oder Kälte (Unterstationen)


→ z.B. Verteilung in einem Stadtzentrum oder Wohngebiet mit dezentralen Stationen

Unterstation > 150 kW

Anwendungen Transportleitung mit Thermosyphoneffekt

Höhenunterschied nutzen: Wärme kann ohne oder mit weniger Pumpenergie transportiert werden.


Funktionsprinzip:

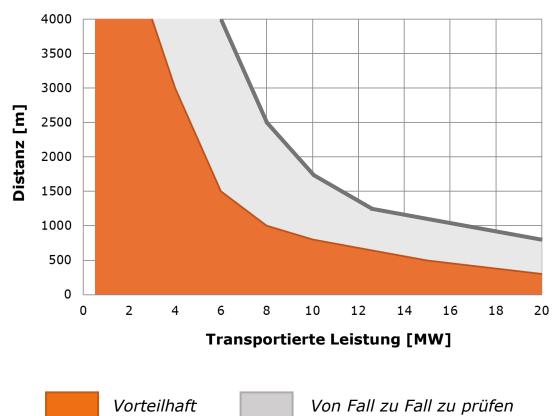
Gasförmiges CO₂ steigt durch den Höhenunterschied, respektive den hydrostatischen Druck des flüssigen CO₂ nach oben.

Vorteil: Weniger Stromverbrauch für Pumpen.

Optimal: Quelle liegt tiefer als die Energiezentrale.

Grenze: Bei umgekehrter Höhenlage entfällt der Effekt.

Anwendungen Transportleitung



Das Verhältnis von Leistung zu Entfernung wird begrenzt durch:

- Druckverluste, die zu niedrigeren Temperaturen führen (Zweiphasensystem arbeitet nahe der Sättigung)
- Verfügbare Dimensionen der RTP-Leitungen

Der grösste Nutzen entsteht, wenn Leistung und Distanz unterhalb der grauen Linie liegen.

Marktvorteile in zwei Anwendungsfällen

Altstädte

Energieservice: Heizen, Kühlen, Warmwasser

Umgebung: Dicht besiedelt

Netzwerkgrösse: bis zu 10 MW

Vorteile:

- Dekarbonatisieren von Altstädten
- Erweitern von bestehenden Heiz-Kühlnetzwerken «letzter km»
- Inliner, im Wasser oder Brücken, auf Dach oder Fassade

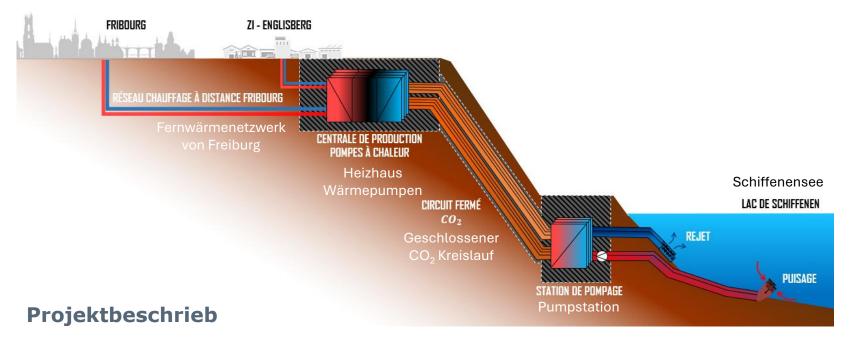
Transportleitung zu grossen Wärmepumpen

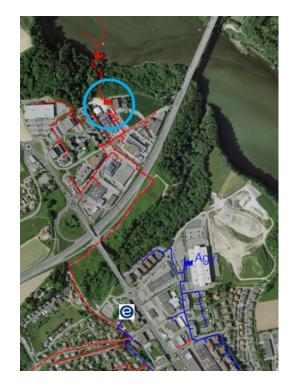
Energieservice: Transportleitung zu grossen WP für Fernwärmenetz

Umgebung: Städte, Industrie, Land

Netzwerkgrösse: bis zu 20 MW

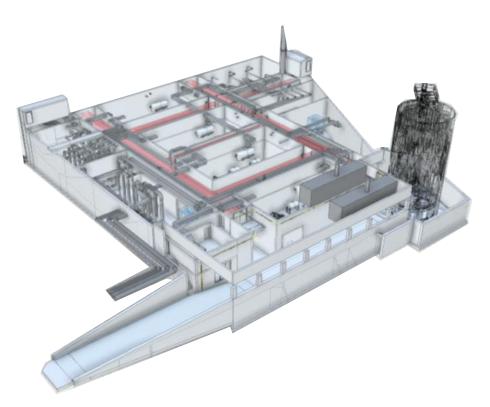
Vorteile:


- Schnelle Verlegung auch in steilem Terrain
- Grosse Kapazitäten mit kleinen Rohren und Redundanzen
- Thermosiphon-Effekt


Projekt Zentrale ZI Englisberg

- Nutzung der Wärme des Sees als Energiequelle.
- Leistung: 18 MW
- > Energie: 55 GWh
- Gesamtbudget: 55 Mio. CHF

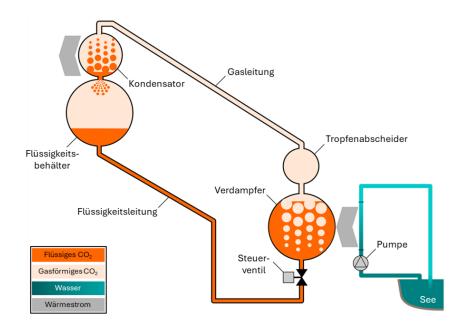
Projekt Zentrale Englisberg – Schematische Ansicht



- → 4 Wärmepumpen von 4,5 MW mit CO₂-NH₃-Wärmetauschern mit 4 CO₂-Kreisläufen für Redundanz
- > 1 Speicher mit 860 m³ Volumen

Investitionen in 2 Phasen:

- Bau des Gebäudes, Speicher und 2x 4,5 MW Wärmepumpen
- Investitionen für weitere 2x 4,5 MW bis 2035



Projekt Zentrale Englisberg – CO₂-Übertragung

00.00

Variante CO₂ Variante Wasser

- Geringere Umweltauswirkungen und positive Rückmeldungen der Behörden
- Vereisung des Wärmetauschers wird vermieden
- Installation in steilem Gelände problemlos

Finanzielle Bilanz:

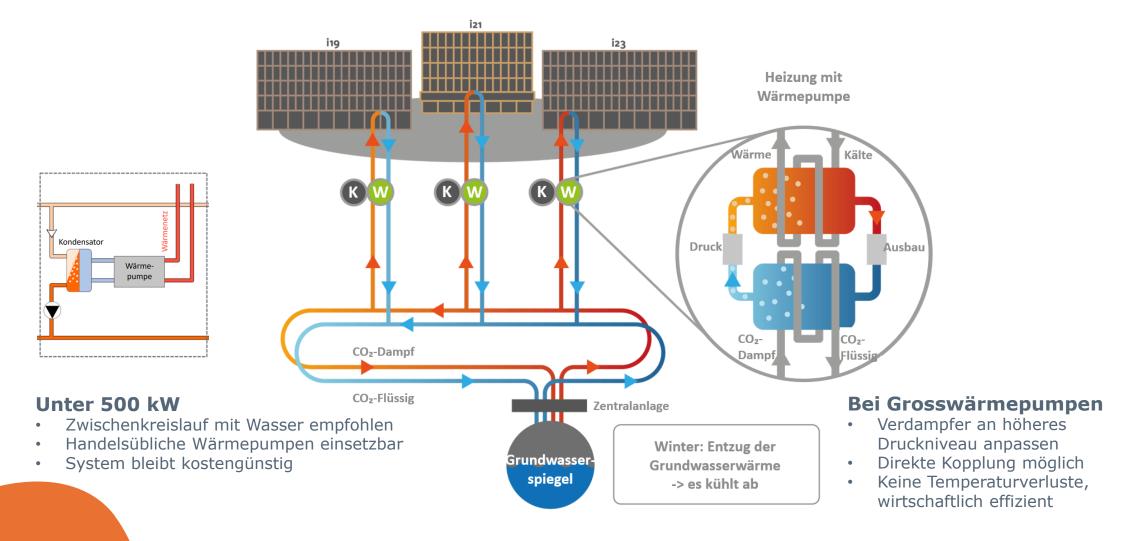
Mindestens 6 Mio. CHF Einsparung über 40 Jahre

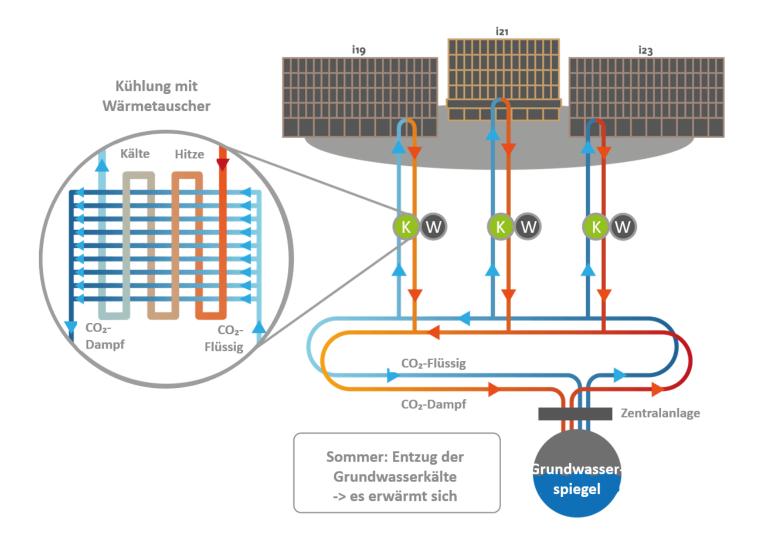
Pilotanlage in Sitten, Schweiz

Fakten

- Innosuisse mitfinanziertes Projekt
- In Sitten, Wallis (CH)
- In Betrieb seit Mai 2022
- 100% erneuerbare Quelle vom Grundwasser und Abwärme vom Rechenzenter
- Quelltemperatur zwischen 5-11 °C
- Ein Kreislauf verbindet drei Gebäude
- Kapazität von bis zu 350 kW H&K

Projektpartner (R&D + Industrie)





Betrieb im Winter

Betrieb im Sommer

Unsere Leistungen

BERATUNG & ENGINEERING

Systematische Planung

Wir entwickeln technisch, rechtlich und wirtschaftlich optimierte Konzepte unter Berücksichtigung aller projektspezifischen Anforderungen und Schnittstellen.

BESCHAFFUNG & BAU

Projektabwicklung

Wir übernehmen die **Projektleitung** inklusive Logistikmanagement, Koordination der CO₂-Anlagentechnik, Installationsüberwachung und Inbetriebnahmeprüfung gemäss Normvorgaben.

ÜBERWACHUNG & WARTUNG

Betriebsbegleitung

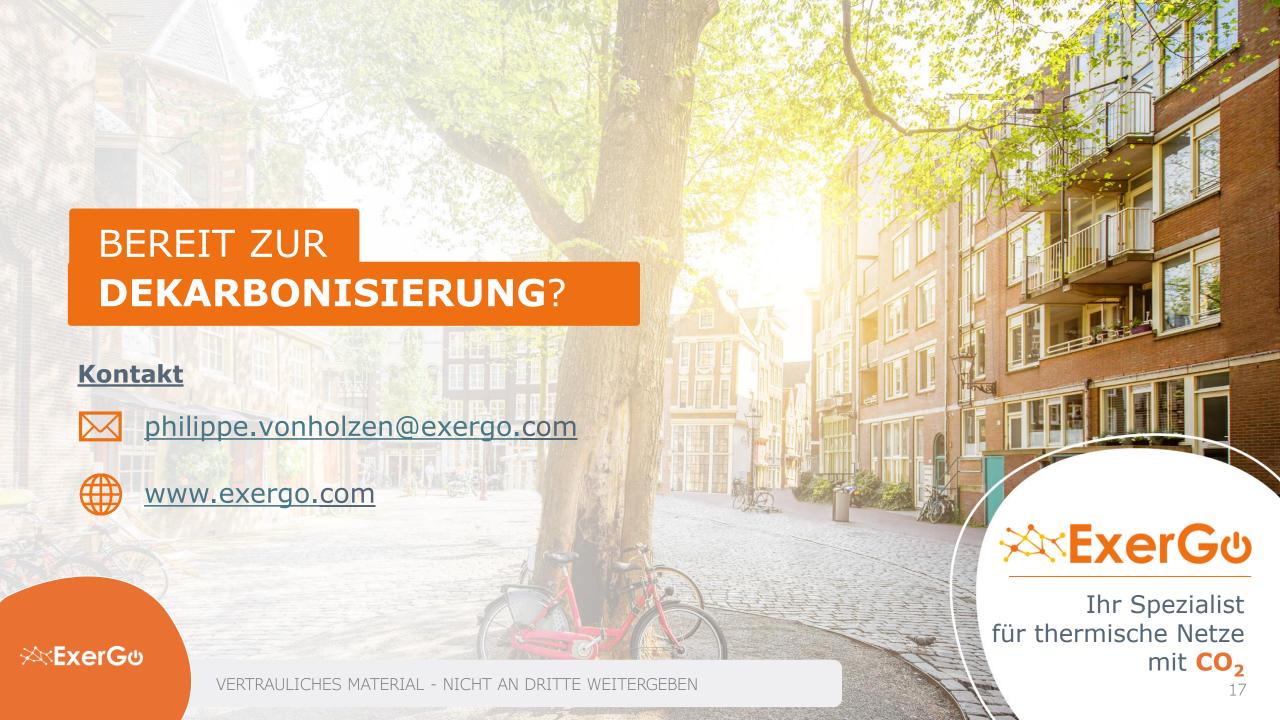
Durch Monitoring,
Störungsanalyse,
Bereitschaftsdienste und
Software-Updates stellen wir
einen sicheren,
energieeffizienten und
normkonformen Dauerbetrieb
sicher.

Take Away

100% natürlich Nicht brennbar, umweltfreundlich, keine Schmiermittel erforderlich

-20 °C bis +90 °C Kompatibel mit herkömmlichen HLK-Geräten

Bis zu
25%
CAPEX
Einsparung


Im Vergleich zu wasserbasierten Netzwerken

Bis zu
100%

PumpkostenEinsparung

Durch Thermosyphon/ Schwerkraftkreislauf je nach Geographie

≫ExerGυ

