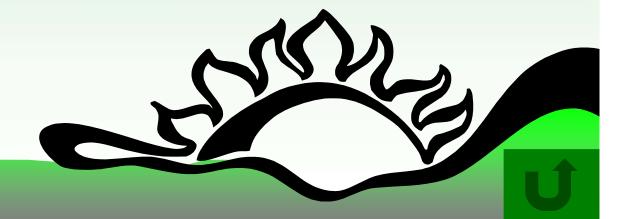

Unsere Kohlevorräte sind eine unverhoffte Erbschaft, welche die Erben veranlasst, die Grundsätze einer dauerhaften Wirtschaft vorläufig aus den Augen zu verlieren und in den Tag hinein zu leben.

Die dauerhafte Wirtschaft muss ausschließlich auf die regelmäßige Benutzung der jährlichen Strahlungsenergie gegründet werden.

Wilhelm Ostwald Deutscher Nobelpreisträger, Leipzig 1909

Bernd Felgentreff Mittelstr. 13 a

04205 Leipzig-Miltitz


Tel.: 0341 / 94 11 484

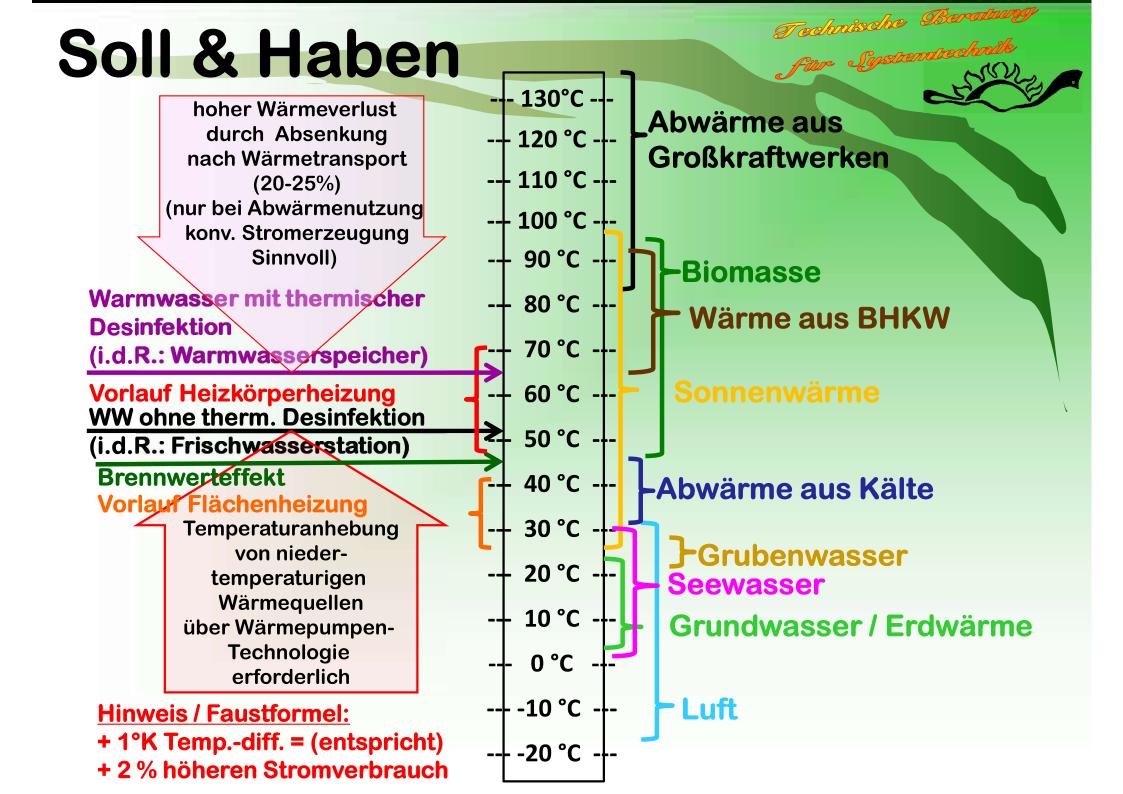
Fax: 0341 / 94 10 524 Funktel.: 0178 / 533 76 88

E-Mail: tbs@bernd-felgentreff.de

web: www.bernd-felgentreff.de

"18 ungenutzte Potentiale zur energetischen Transformation unserer Versorgung"

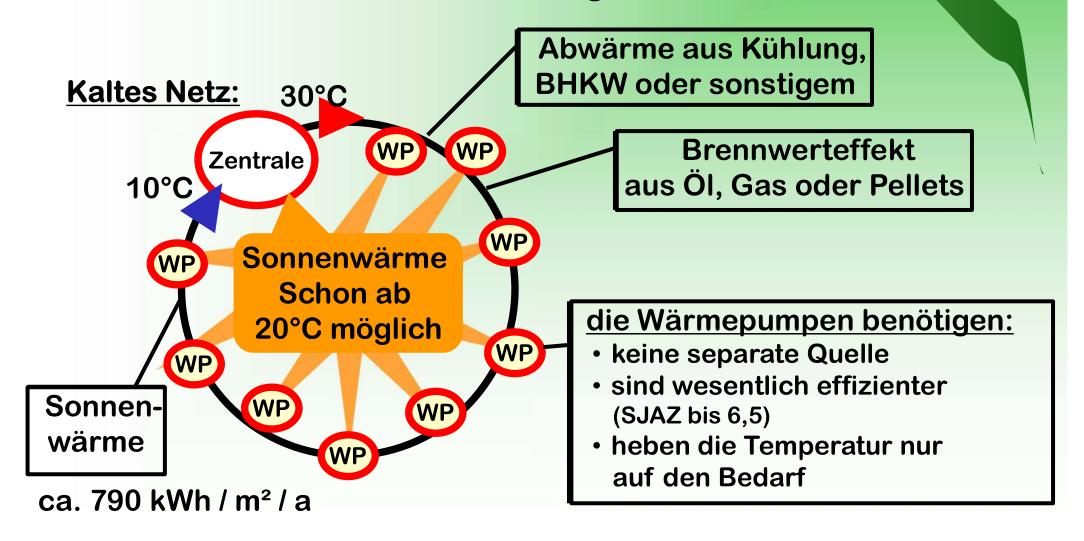
Situation und Lösung


Situation im typischen Stadthaus:

- Ringsherum Nachbarn oder Straße
- · Kein Platz für:
 - Solartechnik
 - Erdwärmesonden
 - Pelletlager
- Energieeinsparung nicht durch Außendämmung möglich

Der Lösungsansatz:

- Energieeinsparung durch moderne Reflexionsdämmung innen möglich
- Einbindung von Abwärmepotentialen
- Solartechnik von geeigneten Dächern
- Erdwärmesondenfelder von geeigneten Flächen
- Spitzenlasten aus Biomassen, wie Laub- oder Grünschnittpellets
- ...durch Kalte, intelligente Wärmenetze

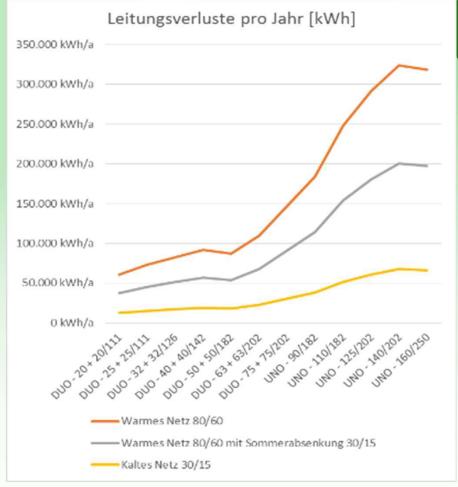


Übersicht Wärmenetze

Wärmenetz		typische Temperaturen		Betriebsweise	Medium	Rohrsystem
Тур	Untergruppe	Vorlauf	Rücklauf			
Kühlung	Eisnetz	-1°C - 0°C	12°C	Ganzjährig, bedarfsgerecht	Flüssigeis	konventionell, isoliert
	Kältenetz	6°C	12°C	Ganzjährig, bedarfsgerecht	Wasser	konventionell, isoliert
	Quelinetz	6°C - 25°C	3°C - 6°C	Ganzjährig, abhängig vom Temperaturniveau der Quelle	See-, Fluss oder Gruben- wasser	Kunststoff, ohne Isolation
Kalte, intelli- gente Wärme- netze	Wärmenetz für niedertemperaturige Abwärme	25°C - 45°C	10°C - 20°C	Ganzjährig, Temperaturführung abhängig von der Abwärmequelle	aufbereitetes Wasser	Kunststoff möglich, isoliert
	wechselwarmes Wärmenetz	Sommer: 25°C; Winter: 45°C	Sommer: 10°C; Winter: 25°C	gleitende Fahrweise, bedarfsgerecht und zieltempoeratur gesteuert	aufbereitetes Wasser	Kunststoff möglich, isoliert
	umschaltbares Wärmenetz	Sommer: 30°C; Winter: 70°C	Sommer: 10°C; Winter: 30-40°C	Sommer-Winter Umschaltung	aufbereitetes Wasser	konventionell, isoliert
	niedertemperaturige Wärmenetze	Sommer: 70°C; Winter: 90°C	Sommer: 50°C; Winter: 70°C	Ganzjährig, nicht abschaltbar	aufbereitetes Wasser	konventionell, isoliert
tionelle Wärme- netze	hochtemperaturige Wärmenetze	Sommer: 90°C; Winter: 120°C	Sommer: 70°C; Winter: 90°C	Ganzjährig, nicht abschaltbar	aufbereitetes Wasser	konventionell, isoliert, Hochdruckbe- ständig (15 bar)

Kalte, intelligente Wärmenetze

- Wärmeverluste drastisch reduziert
- Jegliche Art von Abwärme ist Nutzbar
- Die Zentrale ist nur noch der Manager


Kriterium: Belegungsdichte

Belegungsdichte	Eignung (2020-Standard)		Beispiele	
2000 kWh / lfd.m. / a			Großstadtzentrum	
1900 kWh / lfd.m. / a				
1800 kWh / lfd.m. / a	gut geeignet		Kleinstadt, kompakt	
1700 kWh / lfd.m. / a	gut geeignet			
1600 kWh / lfd.m. / a	geeignet		Kleinstadt, wenig Mehrgeschossbau	
1500 kWh / lfd.m. / a	geergriet		Ort mit industrieller HT-Abwärme	
1400 kWh / lfd.m. / a	bedingt geeignet			
1300 kWh / lfd.m. / a	beamyt geergnet	_{sehr} gut geeignet	Ort mit Abwärme aus Biogasanlage	
1200 kWh / lfd.m. / a		Sellinet	Kleinstadt, weitläufig	
1100 kWh / lfd.m. / a		geelg ¹¹³		
1000 kWh / lfd.m. / a		y	Ort mit industrieller NT-Abwärme	
900 kWh / lfd.m. / a	-ianet			
800 kWh / lfd.m. / a	ungeeignet		Ort mit kleinem Zentrum	
700 kWh / lfd.m. / a	פיוט			
600 kWh / lfd.m. / a			kompakter Ort	
500 kWh / lfd.m. / a			Ort ohne Mehrgeschossbau	
400 kWh / lfd.m. / a			30-er Jahre Siedlung	
300 kWh/lfd.m./a			Siedlung	
200 kWh / lfd.m. / a			weitläufige Siedlung	
100 kWh / lfd.m. / a			sehr weitläufiges Dorf	
	konventionelles Wärmenetz	Kaltes, intelligentes Wärmenetz		

Unterschiedliche Wärmenetze Relation der übertragenen Leistung zu den Leistungsverlusten pro 1000 m

Mögliche Potentiale

zur Nutzung in Kalten, intelligenten Wärmenetzen

Energiequelle	Bemerkungen
O Abwärme aus Industrieprozessen	< 60°C bisher nicht genutzt
O Abwärme aus Kühlung / Rückkühlung	93% bisher nicht genutzt
1 Sonnonwarmo	bis zu 400% pro m² zur PV ; 200% besser als im EFH
	In
○ Erdwärme **	"heißen Wärmenetzen"
thermische Seewasser- / Grubenwassernutzung	nicht nutzbar
○ Kraft-Wärme-(Kälte)-Kopplung	alle Arten nutzbar
O Wärmeauskopplung aus Biogas	auch mit längeren Wegen
O Wärmenutzung aus Biomasse (Grünschnittpellets)	vor allem als Spitzenlast

* Auch als Langzeitspeicher nutzbar

18 Wärmequellen für Ihre Lösung mit ratiotherm Wärmepumpen

Sonne:

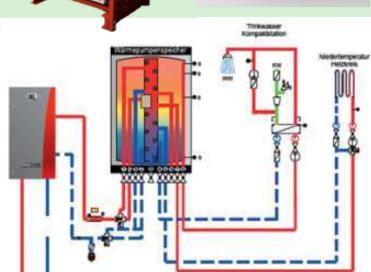
- Direkt zum Puffer
- Indirekt über WP
 - ≻ Kombiniertüber PVT

Wasser:

- > Brunnen
- Grubenwasser
- Grundwasser / Aquifere
- Seewasser / Flusswasser
- Rückkühlwerke
- Kälteerzeugung
- Kältespeicher

Erde:

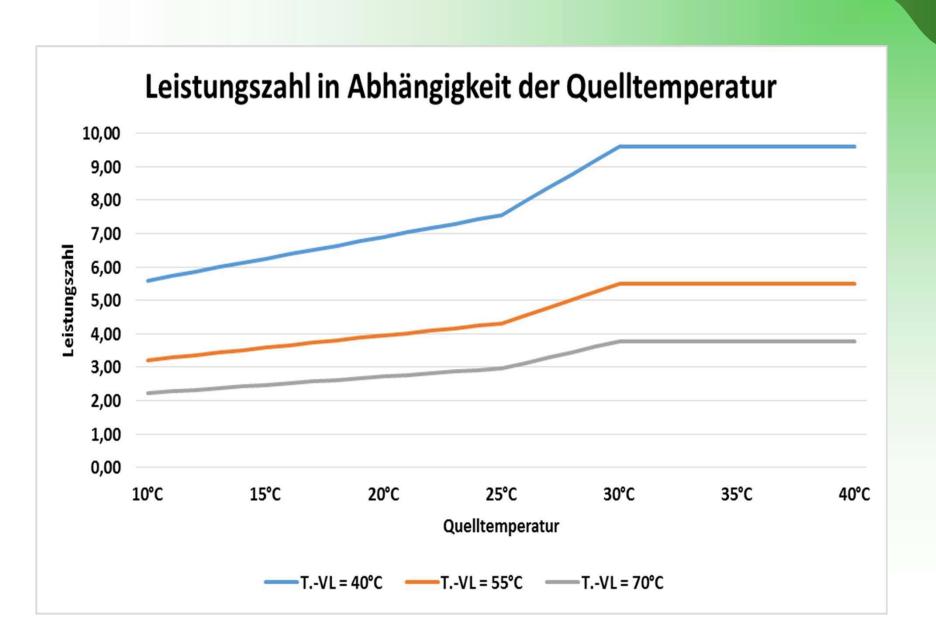
- Flächenabsorber
- Erdsonden


Luft:

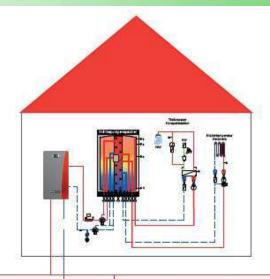
- > Rechenzentren
- > Absorber
- > Abluft

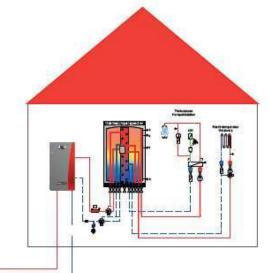
-15 bis +55°C

Feuer:

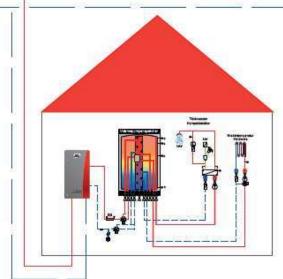

Abgaswärmerückgewinnung
plus
Kondensationswärme

Wärmepumpe WP Max-HiQ





Abwärme Rechenzentrum: Direkte Nutzung des Kühlkreislaufs



Verteilung via Nahwärme auf dezentrale Wärmepumpen

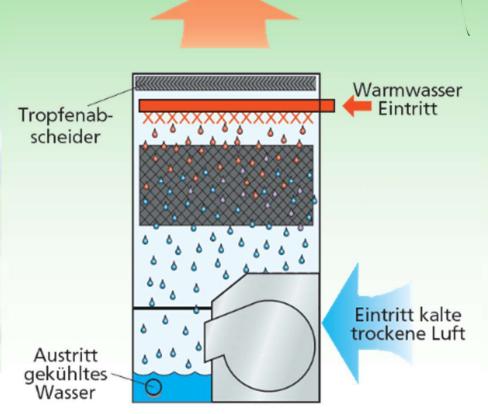
<u>Herausforderung:</u>

- -Kühl-Backup nötig
- -Sensitiver Bereich der IT Infrastruktur

Rückkühlwerke als Wärmequelle

Wärmegehalt von Luft (Druck und Luftfeuchte: normal)

0,336 Wh / m³ / K

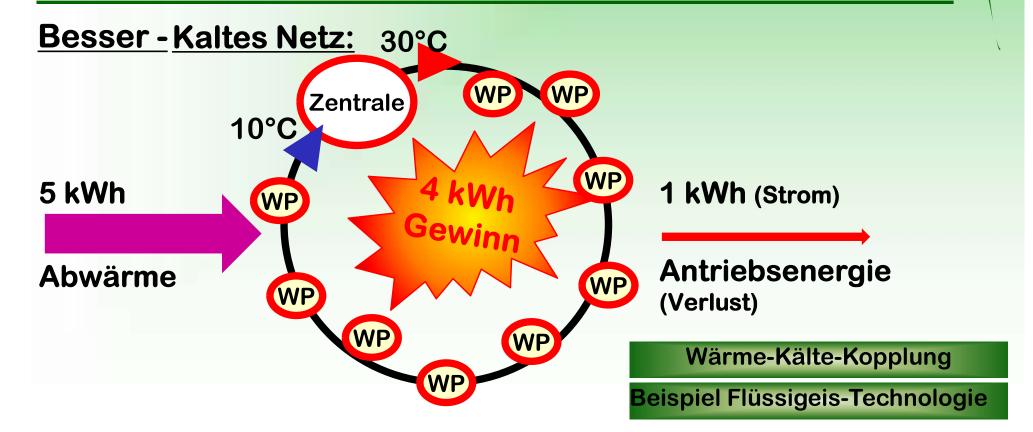

Beispiel: 100 m³/h 50-grädige Abwärme

→ Auskühlung um 30 K → 1 kWh/h

(Vergleich: 200 Menschen bei 0,5m³/h/P bei 6°C Ein- u. 30°C Ausatmung)

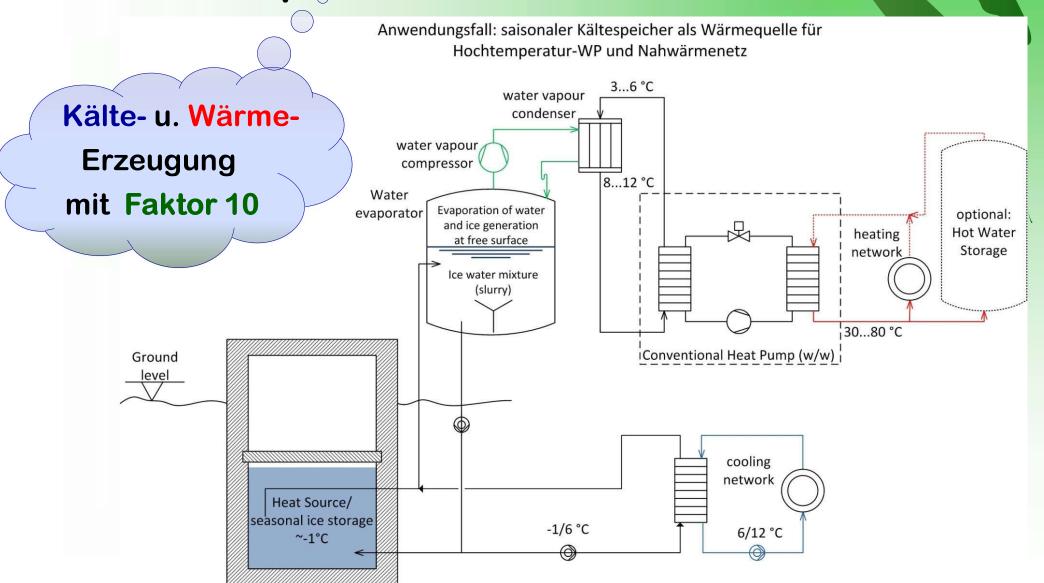
Um 100 kWh Abwärme über ein Rückkühlwerk an die Atmosphäre zu entsorgen, werden 4 kWh elektrischer Antriebsenergie benötigt.

Warme, gesättigte Austrittsluft


Technische Beratung

für Systemtechnik

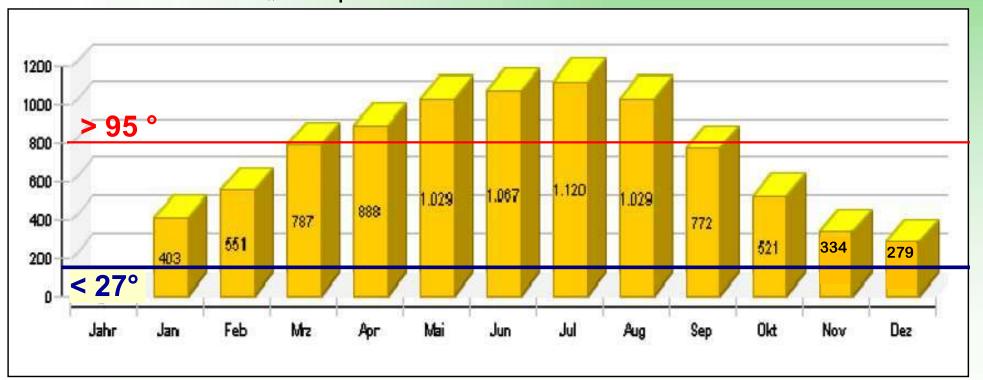
Warum Wärmerückgewinnung aus Kälteanlagen (16% des Stromverbrauches in D)


Bisher (Kompressoren):

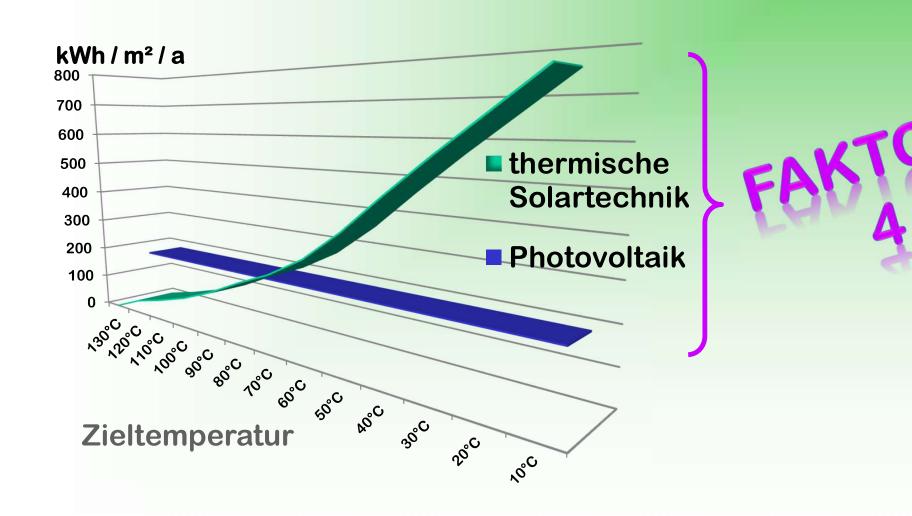
Saisonaler Kältespeicher als Wärmequelle

Über- und Unterschüssiger Solarertrag

Technische Beratung


für Systemtechnik

Regelfunktionen:


Wenn: (A+8°K)>B=,,Pumpe an"

Wenn: B > 90° C = "Pumpe aus"

Solare Jahreserträge in Abhängigkeit von der Zieltemperatur

Oskar° - mit solarer Soleanhebung

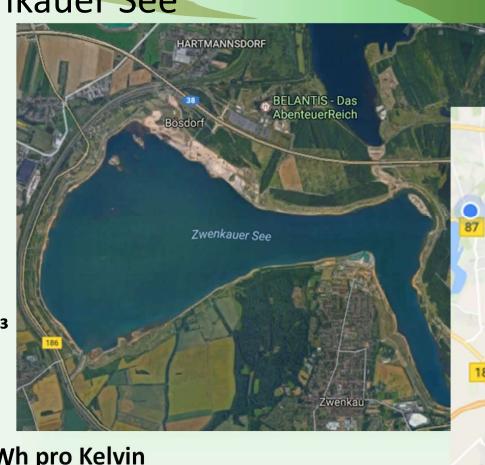
Seewasser - Wärmeentzug am Beispiel Zwenkauer See

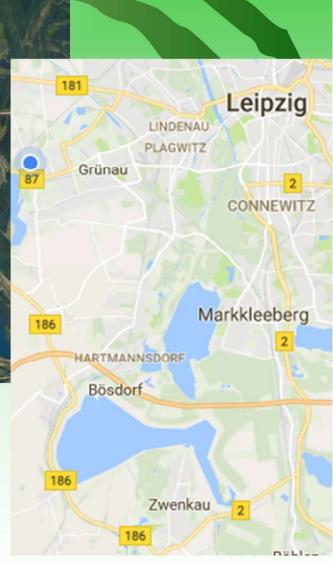
Fläche: 9,63 km²
Umfang: 22,6 km
(Uferlänge)

Tiefe: 17,7 m Gesamtvolumen:

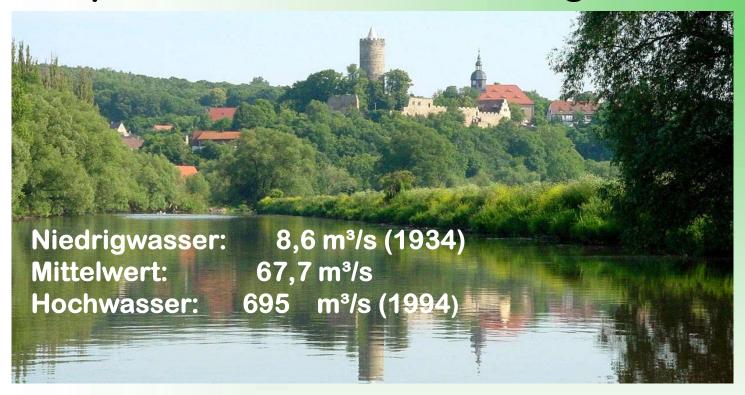
176.026.500 m³ 0,176 km³

Entzugsleistung:


204.190.740 kWh pro Kelvin


204,2 GWh pro Kelvin

Wärmenachfluß aus der Erde:


55,9 GWh pro Stunde/Kelvin (bei 5W/m²/9,63 km²)

Vergleich Einfamilienhaus: 0,015 - 0,035 GWh pro Jahr

Flusswasser als Wärmequelle Beispiel: Die Saale bei Naumburg

Der Mittelwert entspricht 67,7 m³/s → 243.720 m³/h

Daraus folgt: Die Kapazität der Menge ist 282,7 MWh / h / K (Wärme pro Stunde) Zum Vergleich:

Ein Einfamilienhaus benötigt zwischen 10 und 35 MWh / a (Wärme pro Jahr) (0,005 – 0,030 MWh / h)

Flusswasser als Wärmequelle Beispiel: Die Weiße Elster bei Pegau

Der Mittelwert entspricht 16,6 m³/s → 59.760 m³/h

Daraus folgt: Die Kapazität der Menge ist 69,3 MWh / h / K (Wärme pro Stunde) Zum Vergleich:

Ein Einfamilienhaus benötigt zwischen 10 und 35 MWh / a (Wärme pro Jahr) (0,005 – 0,030 MWh / h)

Flußwasserentwärmung

Wärmekapazität:

0,5 m³/s entspricht 1.800 m³/h, entspricht 2.088 kWh/K

Auslegungsbeispiel:

28 mm VA-Rohr, 12 cm Verlegeabstand, 3K, entspricht 200 W/m² Entnahmeleistung

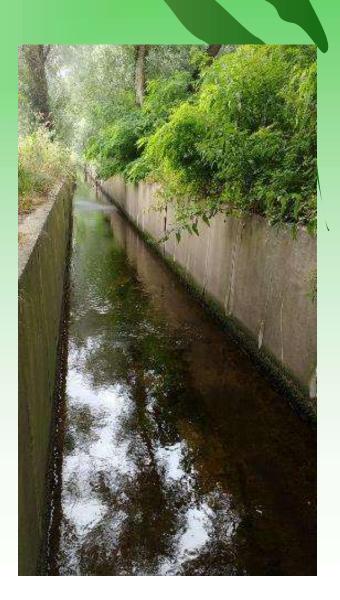
Beim Errichten:

Wärmeübertrager im Tichelmann-Prinzip:

	a	
	zum Flusswasser-Wärmetauscher	
7		
		zum Flusswasser-Wärmetauscher

Vorfluter aus Klärwerken

Im Klärwerk gereinigtes Wasser als Wärmequelle


Argumente:

- ohne Fischbestand
- ohne Treibgut
- Permanent kontrolliert
- Min. Temp. 8°C

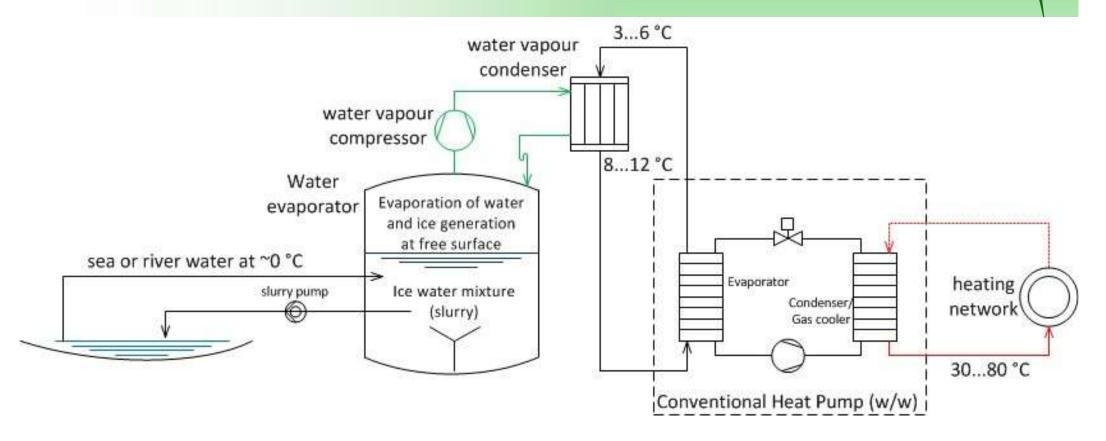
Beispiel Vorfluter der Gemeinde Muldestausee: 600m³ Wasser/h entspricht 696 kWh/k/h

Heizen mit Vakuum-Flüssigeis

Technische Beratung

für Systemtechnik

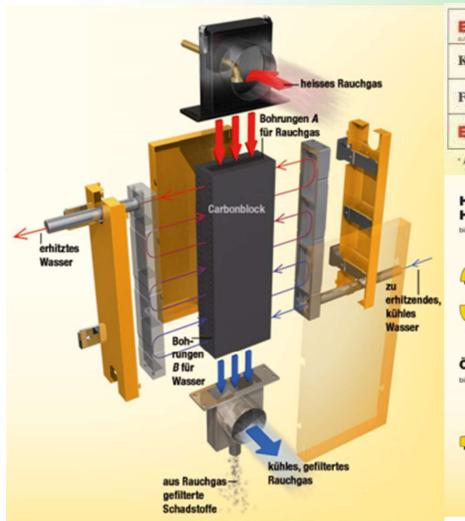
Nutzung natürlicher oder künstlicher Wasserreservoire als Wärmequelle


Vorteile

Konstante Temperatur der Wärmequelle

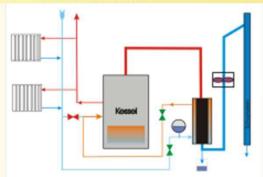
Höhere Wärmequellentemperatur als bei Luftwärmepumpen

Vermeidung von Schallproblemen von Luftwärmepumpen


Geringere Investitionskosten gegenüber Erdwärme, keine Regenerierungsprobleme

Öko-Carbonizer

Abwärmenutzung durch Rauchgaskühlung und Kondensationswärme



EMISSIONSWERTE*	VOR CARBONIZER	NACH CARBONIZER
Kohlenstoffverbindungen	197 mg	O mg
Feinstaub, Staub und Ruß	152 mg	< 21 mg
ENERGIEGEWINN ·	O kw	45 kw

* Auszug aus TÜV Süd-Messung (April 05): 350KW Hackschnitzelheizung

Prinzip Abwärmenutzung Gestern und Morgen

bisher das
Problem:
passen selten
zusammen

- 1. zeitlich,
- 2. räumlich und
- 3. temperaturig

Aktuelle Lösung:

- 1. Zeitliche Entkopplung über saisonale Wärme- und Kältespeicher
- 2. Räumliche Verbindung über Kalte, intelligente Wärmenetze
- 3. Spitzenlastversorger für Redundanzen und Endstufen mit integrierter Wärmepumpe

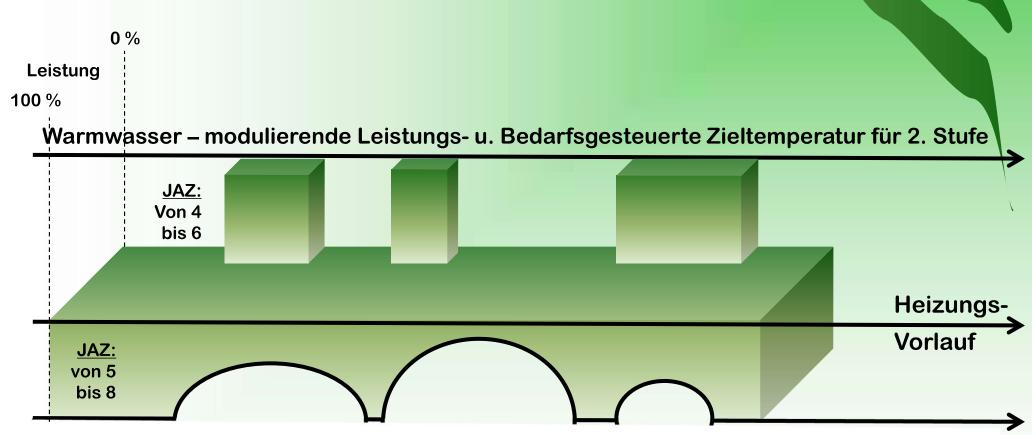
Ein Kessel für alle Fälle

Energieerzeugung aus halmgutartiger Biomasse, Körner und Spelzen

Nie mehr abhängig von einem Brennstoff

Vorteile

- ▶ Für vollaufomatischen 24/Std. Be trieb ausgelegt
- Direkte Einbindung in bestehende Produktionsanlagen möglich
- ➤ Kompakter Authau
- ▶ Kein Fundament n\u00fctig
- ▶ Minimaler Montageauf wand
- Individuelle Maschinenausführungen je nach Kundenanforderungen



Nie mehr abhängig von einem Brennstoff

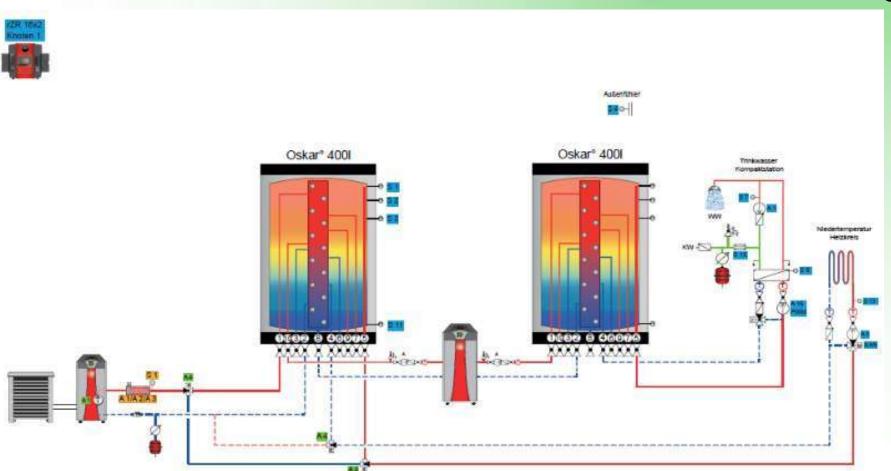
Technische Berat

Modulierendes, und 2-stufiges Wärmepumpensystem

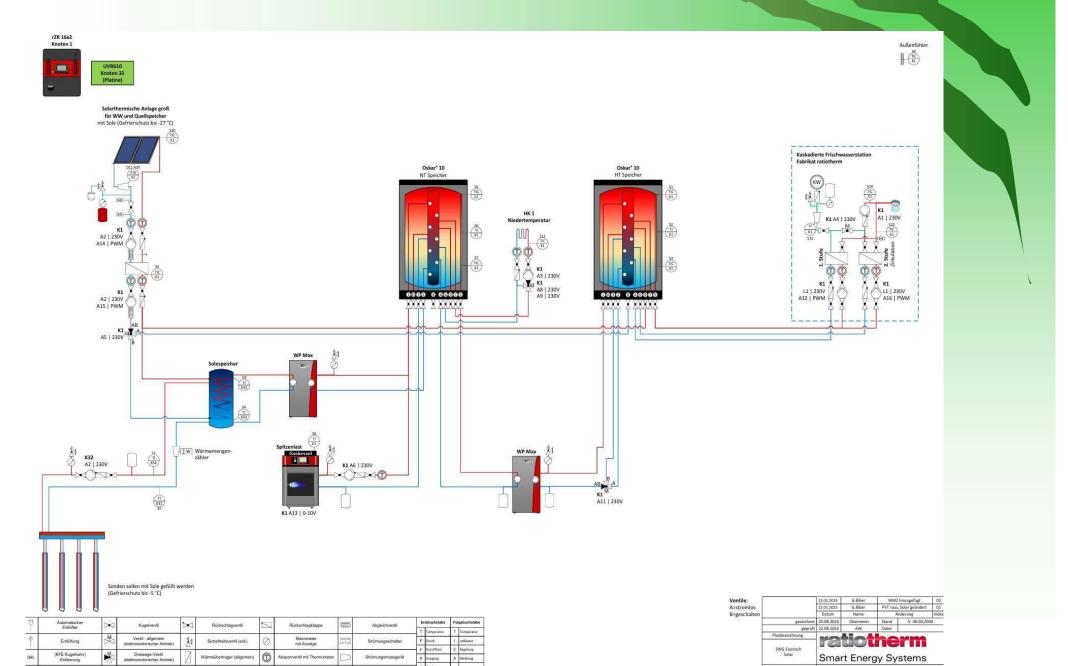
Quelltemperaturen zwischen 10°C und maximal 55°C für modulierende 1. Stufe

Beispiel aus der Praxis:

Technische Beratung


für Systemtechnik

Mehrfamilienhaus, Flächenheizung, zentrale WW-Erwärmung

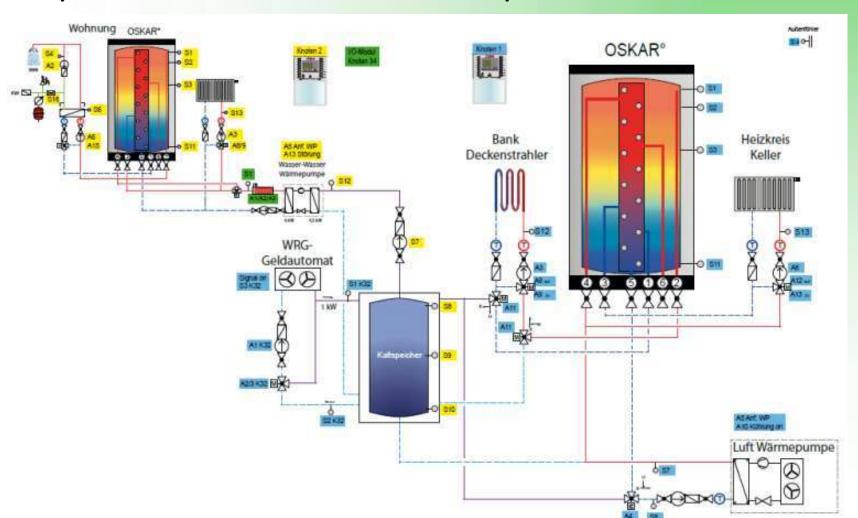

Lösung:

2-stufige-Wärmepumpenanordnung:

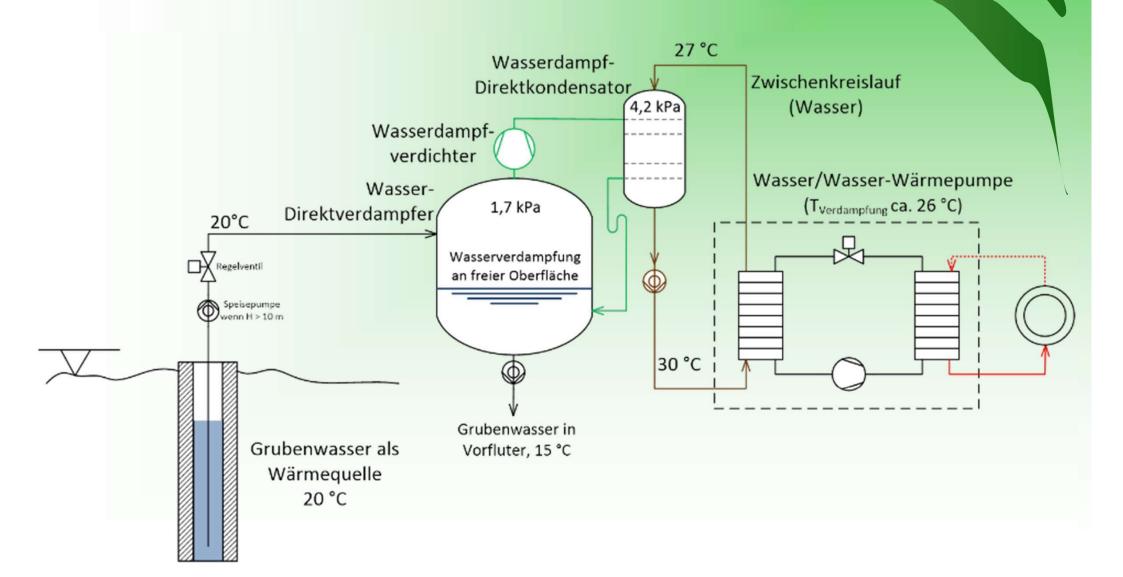
- 1. Stufe: Luft-WP mit Kühlfunktion f. Flächenheizung
- 2. Stufe: Wasser-Wasser-WP nur für Trinkwassererwärmung

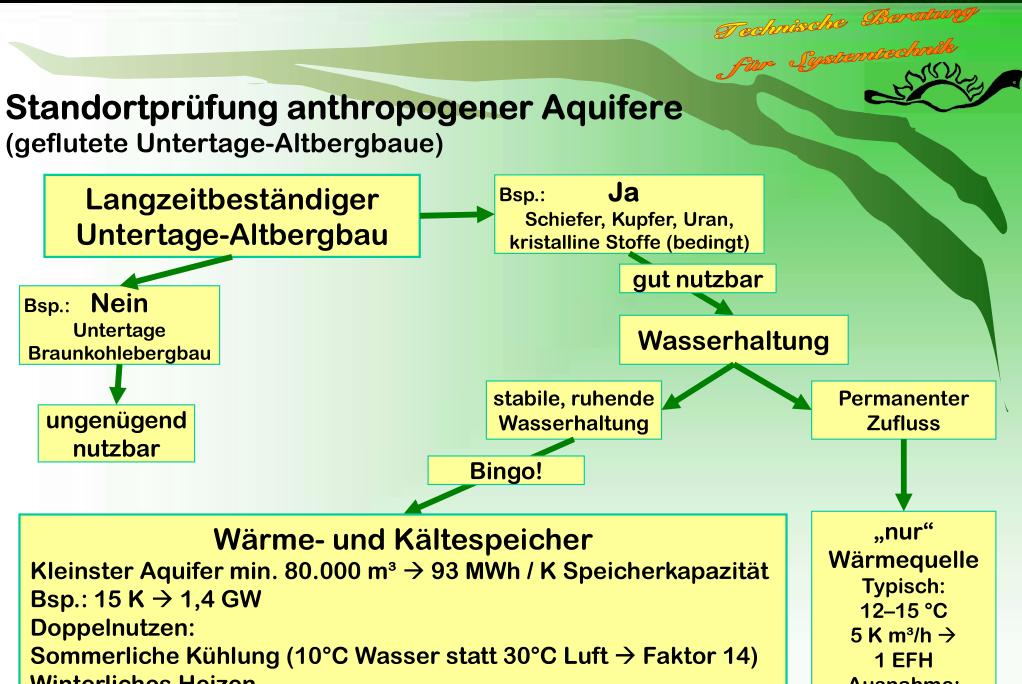
Mehrfamilienhaus

Beispiel aus der Praxis:


Technische Berutung

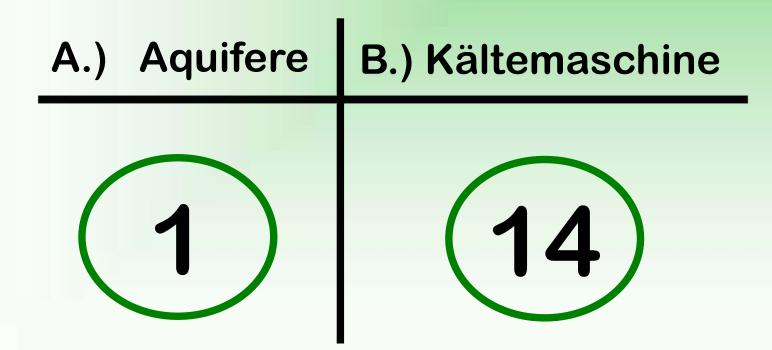
für Systemtechnik


Sparkasse und Wohnhaus


Lösung:

Wärmerückgewinnung aus Kühlung durch Wärmepumpe Warmwasser nur für Wohnungsstation; Sparkasse heizen und kühlen – Spitzenlast mir Luft-Wärmepumpe

Prinzip des Wärmeentzugs durch Direktverdampfung


Winterliches Heizen (25 statt 10°C → ca. 35% weniger elektrischer Aufwand für WP)

Ausnahme: **Bsp.: Freiheit 3**

Vergleich Aquifere contra konventionelle Kühlung

Frage:

Schätzen Sie bitte, wieviel Kilowattstunden elektrische Energie sind nötig, um 50 Kilowattstunden Raumkühlung bei 30-grädiger Außentemperatur zur Verfügung zu stellen?

Technische Beratung

für Systemtechnik

ungenutztes Potential: Gärrestelager

- Zentrale Herstellung von H₂ lässt die damit verbundene Abwärmenutzung in kleinen Orten nicht zu.
- Biogasanlagen gehören in diesem Zusammenhang zur "letzten Meile".
- Über Strom aus Biogas, Sonne oder (und) Wind in Verbindung mit dem ungenutzten Potentialen des Gärrestelagers (aller) Biogasanlagen, erzeugt die zur Nutzung benötigte Wärmepumpe eine 12 - Fach höhere Nutzwärme.

Bisher ungenutztes Potential:

Niedertemperaturige Abwärme aus dem Gärrestelager: Bsp.: 40°C zur Außentemp. 10°C entspricht 30K * 5000m³ = 174 MWh

> Wärmepumpe 1,7 kWh bei SJAZ 6

Nutzwärme als Heizenergie

Bsp.: 10 kWh

Strom aus Sonne + Wind

Bsp.: 20 kWh

Thermische Nutzung von Wasserstoff
Herstellung + Transport + Lagerung
(Faktor 0,5)

Power to Head (Strom zu Wärme) Warum ist PtH 1:1 zu hinterfragen?

- 70 Jahre Erfahrung aus der Schweiz
- Exergieverschwendung

Besser: $1:2 \rightarrow Luft$

1:3 **→** Erde

1:4 → Wasser

1:5 → Abwasser

1:6 → Abwärme

1:7 → Abwärme plus Flächenheizung

1:8 → Wärme- und Kältenutzung

Neue Geschäftsfelder für Stadtwerke

- ➤ H², 1 x Strom 2 x Wärme
- > Abwärme als Wertstoff (Nachnutzung Industrieabwärme)
- Raum- und Gewerbekühlung (Kälte als Regelenergie)
- Exergie-grad bezogene Tarife
- > Alternative Spitzenlastbrennstoffe
- Stromspitzenkappung als Dienstleistung
- Transformations-Contracting
- Dienstleister für "kleine Orte"

Dörfer werden ärmer

Ein durchschnittliches Dorf mit ca. 500 Einwohnern

...hat Kosten pro Jahr für:

630 T€ - Heizung

370 T€ - Strom

1000 T€ - die ohne Mehrwert abfließen und nur "Verbraucht" werden.

Die nachwachsenden Rohstoffe:

- Gärreste aus Biogasanlagen, Grünschnitt,
- Biomüll, stofflichen Verwertung von Biomasse
- niedertemperaturige Abwärme aus Trocknungs- u. Kühlprozessen

und nichtversiegenden Energiequellen:

- Erdwärme (Grundlastfähig), Sonne
- ...werden in den meisten Ortschaften nicht oder kaum genutzt.

"Das Geld des Dorfes, dem Dorfe" Friedrich Wilhelm Raiffeisen

Es gibt nichts Gutes, außer

- man tut es! (Erich Kästner)

Bernd Felgentreff Mittelstr. 13 a

04205 Leipzig-Miltitz

Tel.: 0341 / 94 11 484

Fax: 0341 / 94 10 524

Funktel.: 0178 / 533 76 88

E-Mail: tbs@bernd-felgentreff.de

web: www.bernd-felgentreff.de

